AND8192/D

Charge Pump Based Multiple LED Driver

Prepared by: Michael Bairanzade
ON Semiconductor
 \[

ON Semiconductor{ }^{\star}
\]
 \section*{ON Semiconductor ${ }^{\text {º }}$}
 \section*{ON Semiconductor ${ }^{\text {º }}$}

http://onsemi.com

APPLICATION NOTE

On the other hand, combining three functions in the same system creates a special case since the converter must be capable of driving the wide current load needed for the different functions. The typical currents used to drive the LED, summarized in Table 1, range from a low 1 mA to 350 mA when the flash is activated. Moreover, unlike the xenon photo flash, the LED system must have a relatively long pulse of light to properly illuminate the scene. Typically, a xenon pulse has a 1 ms flash duration, the LED system being in the 100 ms to 200 ms range. Consequently, the converter must be designed to support such a large demand.
High powered LED capable to sustaining up to 800 mA are under development and drivers for these devices should be available within a few months.

Abstract

This application note describes a multi-functional system, capable of generating and controlling the power needed to utilized three features available in modern cellular phones. In addition to larger displays, with full color capability, flash and torch features have now been added to support the embedded camera and the night path finder. These features are made possible by using an ultra bright LED powered by standard battery cells.

BASIC CIRCUIT DESCRIPTION

Since the LED have a forward drop voltage ranging from 3 V to 4.5 V , depending upon the forward current, a straightforward connection to a standard battery is not feasible as depicted Figure 1. A boost structure must be used to make the power supply voltage compatible with the LED.

Figure 1. Typical Lithium-lon Battery Voltage and White LED

Table 1. White LED Typical Applications

LED	Backlight	Torch	Flash
OSRAM LWY85S	$1 \mathrm{~mA}-10 \mathrm{~mA}$		
OSRAM - LWT67C	$1 \mathrm{~mA}-20 \mathrm{~mA}$		
OSRAM		100 mA	350 mA
OSRAM - LWW5SG			
CITIZEN - CL590S	$1 \mathrm{~mA}-20 \mathrm{~mA}$		
NICHIA-NECWB205	$1 \mathrm{~mA}-20 \mathrm{~mA}$		800 mA
LUMILED			

Along with the amount of current the converter provides, it is worthwhile to note the thermal behavior of both the silicon and the power LED.

According to the OSRAM's data sheet, the Dragon LED (LWW5SG) should have a maximum 4.5 V forward drop with 350 mA current. The power absorbed by the load will be 1.57 W and, assuming a 75% efficiency of the DC/DC converter, will translate to almost 2 W of input power. Consequently, some 400 mW will be dissipated as heat into the silicon and, according to the NCP5603 data sheet, the chip temperature will increase by $\mathrm{R}_{\theta \mathrm{JA}} \times \operatorname{Pin}=85 \times 0.4=$ $34^{\circ} \Delta \mathrm{C}$. Such a temperature increase is acceptable since, even under the worst case $+85^{\circ} \mathrm{C}$ ambient temperature, the junction will be below the maximum rating defined for this chip.

However, we must take into account the low battery situation: in this case, the efficiency of the converter can decrease and we end up with 60% efficiency, yielding almost $54^{\circ} \Delta \mathrm{C}$ temperature increases. At this point, the silicon can rise above $125^{\circ} \mathrm{C}$, under extreme high ambient temperature, and the global long-term reliability of the chip will be impaired. This can be avoided by either reducing the thermal resistance (using a heatsink by means of the PCB layer) or by ensuring the duty cycle is short enough to properly cool off the chip between pulses.

Generally speaking, the High Intensity LED are power limited and care must be observed to avoid any thermal run out during normal operation. This is particularly true for the flash mode in which, as depicted above, nearly 1.6 W are dissipated into the LED junctions. Because the junction to ambient thermal resistance is limited by the packaging of the

LED, a good thermal contact to a dedicated layer on the printed board is essential. The LWW5SG specifications give a maximum $9^{\circ} \mathrm{C} / \mathrm{W}$ junction-to-case thermal resistance, capable of limiting the temperature of the silicon to the $100^{\circ} \mathrm{C}$ maximum specified in the OSRAM data sheet. After dissipating 1.6 W , the maximum thermal to air resistance acceptable by the chip can be calculated as:

$$
\begin{gathered}
\mathrm{R}_{\theta J A}=\frac{\mathrm{T}_{\mathrm{jmax}}-\mathrm{T}_{\mathrm{amb}}}{P_{\text {chip }}} \\
\mathrm{R}_{\theta \mathrm{JA}}=\frac{100-85}{1.6}=9.37^{\circ} \mathrm{C} / \mathrm{W}
\end{gathered}
$$

Since the $\mathrm{R}_{\theta \mathrm{JCC}}$ is $9^{\circ} \mathrm{C} / \mathrm{W}$, it is practically impossible to achieve a $0.38^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient thermal resistance and the only alternative is to limit the operating ambient temperature.

Assuming $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$, then $\mathrm{R}_{\theta \mathrm{JA}}=(100-60) / 1.6=$ $25^{\circ} \mathrm{C} / \mathrm{W}$.
In this case, the case-to-ambient thermal resistance is $25-9=16^{\circ} \mathrm{C} / \mathrm{W}$, a value more realistic, although not so easy to achieve with a room limited PCB.

NCP5603 operates without special treatment in terms of thermal sinking and a simple copper flag is built underneath the QFN package as depicted Figure 3.

The schematic of the multiple application, Figure 2, illustrates the three functions:

- Backlight \rightarrow four LED in parallel, dimming capability.
- Torch \rightarrow one LED, no output adjustment.
- Flash \rightarrow one power LED, pulse width adjustable.

Figure 2. Multiple LED Driver Application

BOTTOM Layer

Figure 3. Printer Circuit Board GERBER Files (scale 1:1)

The system is powered by two AA cells in series, assembled in a standard battery holder, the operating mode being selected by the S1, S5 and S6 switches. Since the total current is limited by the DC/DC converter, the backlights LEDs are automatically deactivated when either the Torch or the Flash are selected. Moreover, the Flash is not available while the Torch is running.

An extra feature, backlight dimming, is provided by switch S1 is associated with potentiometer P1. When the switch is connected to ground, the NCP5603 enabling pin EN is high and the brightness is maximized. When the
switch S 1 is flipped to the Vcc position, the RESET of U5A is released and the EN pin is clocked High / Low by the clock generated by U2A / U2B. Simultaneously, diode LED D7 turns ON to identify the PWM mode of operation. The duty cycle of the U5A / $\overline{\mathrm{Q}}$ output is manually adjusted by potentiometer P1 to set the brightness of the four associated LED.

The efficiency of the system has been evaluated at room temperature (see Table 2), the results being fully within the NCP5603 data sheet specifications.

Table 2. Demo Board Efficiency

$\mathbf{V}_{\text {bat }}$	$\mathbf{I}_{\text {bat }}$	$\mathbf{V}_{\text {out }}$	$\mathbf{I}_{\text {out }} / \mathbf{L E D}$	$\mathbf{I}_{\text {out }}$ Total	Yield	Comments
3.50 V	2.3 mA	0 V	0 mA	0 mA	-	No Load
3.50 V	132 mA	4.42 V	16.5 mA	66 mA	63.14%	
3.50 V	170 mA	4.92 V	21.4 mA	85.6 mA	70.78%	
3.10 V	131 mA	4.42 V	16.5 mA	66 mA	71.83%	
3.10 V	169 mA	4.92 V	21.4 mA	85.6 mA	80.38%	
3.10 V	300 mA	4.92 V	142 mA	142 mA	75.12%	Torch operation

The inrush current is internally limited by the chip, as depicted Figure 4, and no uncontrolled current takes place when the system starts up from scratch.

Figure 4. Typical Startup Timing
With a startup time well below 1 ms (from zero to full Vout, see Figure 4), the NCP5603 is fast enough to accommodate a flash application as shown in the demo board.

Figure 5. Typical Digital Dimming
Although there is no dedicated pin, the LED brightness can be dimmed by means of the EN digital control. The waveform captured in Figure 5 illustrate this behavior, the PWM being intentionally arranged out of the audio band for a portable system.

NCP5603 - MULTIPLE DRIVE CIRCUIT - Bill Of Material

QTY	Designator	Description	Footprint	Manufacturer	Part Number
1	R1	$10 \mathrm{k} \Omega$, pack four independent elements	SIP-5	BOURNS	4605X series
3	R2, R10, R13	$10 \mathrm{k} \Omega$	0805	Vishay Draloric	
4	R3, R4, R5, R6	82Ω	0805	Vishay Draloric	
1	R7	200Ω	0805	Vishay Draloric	
1	R8	1.2Ω	0805	Vishay Draloric	
1	R9	10Ω	0805	Vishay Draloric	
2	R11, R12	$100 \mathrm{k} \Omega$	0805	Vishay Draloric	
1	R14	$1.5 \mathrm{k} \Omega$	0805	Vishay Draloric	
1	P1	$100 \mathrm{k} \Omega \mathrm{A}$ Potentiometer	VR4	BOURNS	3386F-TW
1	P2	$200 \mathrm{k} \Omega$ A Potentiometer	VR4	BOURNS	3386F-TW
1	C1	$4.7 \mu \mathrm{~F} / 10 \mathrm{~V}$	1206	TDK	
3	C2, C3, C4	$1 \mu \mathrm{~F} / 6.3 \mathrm{~V}$	1206	TDK	
1	C5	$10 \mu \mathrm{~F} / 10 \mathrm{~V}$	1206	TDK	
1	C6	33 nF	0805	KEMET	
1	C7	$2.2 \mu \mathrm{~F}$	0805	TDK	
2	C8, C9	100 nF	0805	KEMET	
4	D1, D2, D3, D4	LW67C	OSRAM_LED	OSRAM	
1	D5	GOLDEN DRAGON	OSRAM_DRAGON	OSRAM	LWW5SG
1	D6	LWG6SC	OSRAM_LWG	OSRAM	
1	D7	LED	OSRAM_LED	OSRAM	
1	Q1	MMBF0201N	SOT_23A	ON Semiconductor	
2	Q2, Q3	MGSF1N03L	SOT_23A	ON Semiconductor	
1	U1	NCP5603	QFN10_COB	ON Semiconductor	
1	U2	NL37WZ04	US8	ON Semiconductor	
1	U4	74HC08	SO-14	ON Semiconductor	
1	U5	MC14538B	SO-16	ON Semiconductor	
4	S1, S2, S3, S6	Toggle Switch	APEM_CMS	APEM	TL36WS84000
1	S5	Push Button	PUSH_BUT_B	CANNON ITT	KSA 0M210
1	S7	Toggle Switch	CKSWITCH_V	C \& K	ET01MD1 CBE
1	TP1	TEST POINT	TEST_POINT	KEYSTONE	5005 (THM)
1	J3	GND	GND_TEST	HARWIN	$\begin{aligned} & \hline \text { D3082-01 (tin) } \\ & \text { D3082-05 (gold) } \end{aligned}$
1	PK1	$\begin{array}{\|l\|} \hline 2 \times 1.5 \mathrm{~V} \\ \text { Battery holder, } 2 \times \mathrm{AA} \\ \hline \end{array}$	BPACK2	KEYSTONE	2223

ON Semiconductor and 0 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082-1312 USA

Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canad Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your local Sales Representative.

